Diffraction spectrum

November 25, 2016
Figure 3
Abstract: It is well-known that the dynamical spectrum of an ergodic measure dynamical system is related to the diffraction measure of a typical element of the system. This situation includes ergodic subshifts from symbolic dynamics as well as ergodic Delone dynamical systems, both via suitable embeddings. The connection is rather well understood when the spectrum is pure point, where the two spectral notions are essentially equivalent. In general, however, the dynamical spectrum is richer. Here, we consider (uniquely) ergodic systems of finite local complexity and establish the equivalence of the dynamical spectrum with a collection of diffraction spectra of the system and certain factors. This equivalence gives access to the dynamical spectrum via these diffraction spectra. It is particularly useful as the diffraction spectra are often simpler to determine and, in many cases, only very few of them need to be calculated.
Cite as:
(or for this version)

Submission history

From: Michael Baake [view email]
Source: arxiv.org
2010 Adventures in Spectrum Diffraction @nextdoor Dec31 2009
2010 Adventures in Spectrum Diffraction @nextdoor Dec31 2009
Share this Post
latest post
follow us